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ABSTRACT

Censoring, truncation and grouping represent different but related forms

of incompleteness. Methods of producing kernel functions on the incomplete

observations are proposed. They involve substituting for or averaging over

the incomplete observations. Consistency of the procedures in terms of the

criterion of integrated mean squared error is established and optimal choice

of smoothing parameter is achieved.
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SIGNIFICANCE AND EXPLANATION

When data are used to estimate a probability density function, either a

special parametric form is assumed for the latter, a Normal density being a

common particular case, or a nonparametric method is employed. one such

eapeis the Kernel method.

Frmany problems data are available which are incomplete in some

ses.Three types of incompleteness are censoring (in which the exact values

osoeobservations are unknown) truncation (in which the data are known

eatyand also to be restricted to a certain range) and grouping, of which

one manifestation is data in the form of a histogram.

The basic kernel method relies on the data being "complete" and this

paper gives adaptations to cope with the above three types of incompleteness.

one feature of density estimation by the kernel method is the need to choose,

in some sensible or, if possible, optimal way, a parameter which dictates the

smoothness of the resulting estimate. A formula is derived for the value of

the smoothing parameter which is optimal according to one particular

criterion.

Techniques for coping with incomplete data within parametric models are

well established. It is important to deal with such problems with

nonparametric methods as well because, although no parametric model may be

correct for a given application, the converse is true for nonpararsetric

methods, at least asymptotically.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.



KERNEL-BASED DENSITY ESTIMATION USING CENSORED,
TRUNCATED OR GROUPED DATA

D. M. Titterington

I. INTRODUCTION

The problem of density estimation using censored, truncated or grouped

data is an important one. When a parametric model is acceptable, the problem

becomes one of parameter estimation and the maximum likelihood approach is

dealt with succinctly by Dempster et al (1977, Section 4.2). A maximum

likelihood approach to the nonparametric version of the problem is dealt with

by Turnbull (1974, 1976). This does not, however, lead to a smooth estimate

of the underlying probability density function. The object of this paper is

to propose methods for achieving this aim based on the kernel approach and to

investigate some asymptotic properties.

One condition has to be imposed, however, namely that some information

about the overall density be available. In the parametric case this is

supplied by the parametric family chosen. In the absence of this we shall

require that a set of n0  observations be available which are quite

unaffected by the censoring, truncation or grouping mechanism. (If, for

instance, only grouped data are available, in the form of a histogram with

fixed bin size, then there is no hope of consistently estimating the density

everywhere without further information.) The incomplete data, therefore, may

be regarded as supplementary to the original no observations.

*
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The methodology will be similar to that of Titterington and Mill (1981)

who dealt with multivariate data with missing values. In what follows, only

univariate continuous data are considered.

2. THE DATA AVAIIABLE

2.1 Censoring

Along with no independent observations x - (xl,...,x ) from the
0

underlying distribution on a sample space, X, with probability density

function f(-), we have = - (yl...,nl), n, independent observations, with

known values, in A, a subset of X, and n2  independent observations known

to be in A, the complement of A in X.

We assume that, given n, + n2, n, Bi(n, + n2, P(A)), where

P(A) - fA f(x)d

and that no  0 (n0 + nI + n2).

(The asymptotic results we obtain would hold also under the assumption

that given no + nI + n2 - n, no - Bi(n, 0).)

2.2 Truncation

Along with x we have Z - (y1,..,n), nj independent observations

from A, a subset of X. The p.d.f. for each of the {y is therefore

f(y)/P(A) (y e A)

2.3 Grouping

Along with x we have independent samples of sizes

containing independent observations from members A,....,Am, respectively, of

a partition of X. Given n, +...+ n, the nj's are multinomial, with cell

probabilities (P(A )), where

P(Aj) f ' f(x)dx, j 1,...,mAj

-2-
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3. KERNEL-BASED DENSITY ESTIMATION WITH
INCOMPLETE DATA

Given a data-set t - (tl,...,tn) of n independent identically

distributed observations, each with p.d.f. f(x), x e X, a kernel-based

density estimate of f(x) takes the form

n

f(x) - (nh) "  K((x-t)/h)
i-I

where h is a smoothing parameter and the kernel function, K(*), is itself

a density, usually with its mode at zero. We shall assume that K(e) is

square-integrable and symmetric, with bounded first and second absolute

moments. Define

I, - f u2K(u)du

and

12 - f K2 (u)du

One interpretation of our basic question is to ask what to use for the

kernel function on an incomplete observation. In the spirit of Titterington

and Mill (1981) we propose two possible solutions.

(A) Plug in a "complete" data point for the incomplete one.

(B) Average out the "incompleteness".

In the case of censored data, for instance, we require kernel functions

on the n2 censored observations in A. The corresponding p.d.f. is

f(z)/P(A) (z e A)

where P(A) = 1 - P(A).

Although this density is unknown we do have, from x, an estimate

fo(z)/P(i), (z e A (1)

where
no

f 0o(z) (n0 h) K((z-x i)/h)

i=
and

-3-



A L f0(z) dz

A

As justified in Titterington and Mill (1981) we dismiss, for (A), the

"deterministic* mean-imputation procedure of plugging in the expected value

from (1) for each censored observation. Instead we use simulated values from

(1). We may use one value or, more generally, r independent values,

zil,..,,Zir, for the ith censored observation, giving the "kernel"

r
(rh)- 1 rK(( )/h)

It is natural that the averaging in method (B) be carried out using (1),

giving the following "kernel" on each censored observation.

(hP(A)} f ((X-z)/h)0 (z)dz (2)

In practice this integral may well have to be evaluated numerically, in

contrast to what im possible in the missing-values problem (Titterington and

Mill, 1981). Direct simulation from (1) will also be awkward but here the

problem is eased in practice if we simulate from the density fo(z)

(z e X), which is a mixture density that should be easy for simulation, and

ignore all values not in A.

For truncated data, the "incomplete" observations are not so immediately

apparent. We introduce them deviously, as in Dempster et al (1977), by

proposing that, corresponding to the n1  truncated observations, Z, there

lurk n2 observations in A to make up n, + n2 altogether in X. Given

n,, n2 has a negative binomial distribution on (0,1,2,...), with

(n 2 In) - n IP(A).P(A) "-

For each of these n2 we generate kernels, as above, by simulating or

averaging. Joint simulation of n2 and the corresponding (z ij is neatly

achieved by simulating from the p.d.f. X(z) (z e X) until rn, values in

-4-



A have been generated and by regarding the remainder as the rn2  extra

values in A.

It should now be clear how to deal with grouped data, so that we may list

the following proposals for density estimates.

3.1 Censoring

Am o n,
(A) fA (x) - (n0+nI+n 2) lh

1  K((xxi)/h) + K((x-y)/h)

- r n2
h)

+ r 2 K((x-zi)/h , (3)

3'

where (z, ... )zrn2 denote the simulated values, a notation which fits in

better with the truncation case.

A(1 n 0  nIA -i- i lxxi/) ' llxi/

(B) fB(x) -(n0+nl+n) h K((x-xi)/h) + i K((x-y)/h)B 01 2 i-1

+ n 2( A)-I f_ K((x-z)/h)f0(z)dz} " (4)

3.2 Truncation

Formulae (3) and (4) are again relevant. It must be remembered that,

given ni, n2  is the realization of a negative binomial random variable, as

discussed above.

3.3 Grouped data

Am n no

(A) fACx) (no + I n)'h K((x-xi )/h)

k-1()

-m nk rW
+r k K((x-zij )/h (5)

k-li ilij-1

A m n o
(B) fB(x) = 0 + n n)"h- I K((x-xi)/h)

m 1A). )A z

+ nk P(A k K((x-z)/h)f d (6)
k-i k0k=Z1



In (5), the (z ( k ) are independent, with p.d.f.'s
ij

A

fo(z)/P(Ak) (z e Ak), for each i,j,k

with
A AA

(A)= ff0 (z)dz•

4. ASYMPTOTIC RESULTS

In this section we establish consistency of the density estimators under

the criterion of integrated mean squared error and derive optimal values for

the smoothing parameter, h. Specifically, we show that, for suitably

defined n,

f 1 H2h4 Gn--1 4 -'{ 'dxl--Hx)}2dxn h++ olh 4+n-h'l) , (7)

for certain constants H and G. The dominant terms in (7) are minimized by

(GH-2n - 11/5 (8)

and, under this choice, the right hand side of (7), of order 0(n-4/ 5), tends

to zero as n + *. The calculations involved are similar to those of

Rosenblatt (1956) and Epanechnikov (1969).

Note that

f 3(f(x) - 2 (x))2 dx f (- (xl - flx)1 2 dx + f var f(x)dx . (9)

The dominant terms in (7) come from these two constituent parts, which we

evaluate below. For all three types of incompleteness we may observe that,

conditioning on x, i (in the cases of censoring and truncation) and all

sample sizes n, averaging over the simulated data, z, gives

A A
Nf x) - f Bx , for all x

Thus, unconditionally,
A

ZfA(x) - ,nxl

and

A A A
var f (x) - var f Ax) + var fx) (10)

-6-
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A A
Thus, almost certainly, fA () will not be as efficient as f B(.),

although, as we shall see, its comparative ease of application may make it the

preferred method in practice.

In the Appendix, the case of censored data is dealt with in detail, with

the results that H2 is the same for both method (A) and method (B), whereas

the values of G are different. GA and G. are given by equations (A.8)

and (A.7).

Exactly the same results will hold for the truncated-data case except

that the value n in (7) has to be interpreted differently. In practice

N - no + n, will be known and n is to be interpreted as the total sample

size, given n, and no. Thus, formulae in terms of N can be obtained by

substituting from

n - N{eo + (1-80)/P(A)}

in the results for censored data.

Calculations for the case of grouped data give

A A
Ef A(x) - Ef B(x) - f(x) + bh (x)

+ (1-00){bh(x) - P(A(x))- IBh(A(x))f(x)) + o(h
2)

where A(x) is the grouping interval containing x.

In the third term we have followed the approximation leading to equations

(A.4). Also,

A2 - -f var fB(x)dx - (nh)1 {8012 + 2(1-e0)I4 + (1-8o)13/0o1 + o(n- h-

where 14 and 13 are defined in the Appendix.

A A -1 -1h-)f var f (x)dx - f var f (x)dx + (nh) (1-0 )1 /r+o(n h
A B 02

Ii -7-



5. SOME NUMERICAL RESULTS

When there is a substantial amount of censored or truncated data to

supplement x, the density estimator which incorporates them should be better

than that based on x. We present some numerical results for the case of

censored data from a standard Normal distribution, using a Normal kernel

function, for which 11 = 1, 12 = (2) - 1, 13 (6w) - 1 and 14 2 12

With the optimal choice, h , for the smoothing parameter, the dominant

term in (7) is

S (G2Hn 2 )2 5

If only the complete data are used, then the corresponding value is

.2 -2 2/5
so a (Go0H 0 n0 )

where, effectively, no - nO0, Go = 12 and

H2 = 12 fo, {f_(x))2dx
0 1 -4D

Of interest is the ratio

R (S/S52 _2 2 2/G2H
0 0 0 0

Since G = 12,

R = F2H0 /H0

where

F = 0 + (1-0 )(P(A) + P(A)(0 1(1-80 )I /I + 21 /12}
B 0 0 0 0 32 4 2

and F - F + (1-e 0)P(A)/r .

As an illustrative simple example take A (-m,0). Then, from the

Appendix,

H2  H f 2(x)dx

where

H(x) = I1f"(x) (x e A)

= I ((2-0 )f"(x) - - f(x) f"(y)dy) (x e
0 2 -



.. ....... -. . - -.. -- -

Since f' f"(x) = 0, we obtain
02 _2 2

H2  H(1 + (2-6 ) }/2
0 0

so that

R = F2 2/0 + (2-60)2}/2

In particular, since P(A) = 2'

F = 8 + (1-80 ){1 + 8 (1-0 )//61 = 1 + 1 (1-80)2/Y'6
B 0 0 0 0 0 0

F = FB + (1-8 0)/2r

Thus

RB  { 0 + (180)2/}2[{1 + (2-0 ) 2}/211/2

R = {00 +( 1-80)2/vr6 + 8001-00 )/r)2 [{1 + (2-8 )2)/2J1/2
A 00

Values of RA for various values of r and 8 are displayed in Table 1.

The row for r = corresponds to RB . RA can be close to RB  for only a

small value of r, a phenomenon reported also by Titterington and Mill

(1981). Thus, although method (B) is in principle to be preferred, method (A)

can easily be almost as good, as well as being much easier to apply.

6. DISCUSSION

We end with the following comments.

(i) Although the censoring and truncation requirements are very simple,

there is difficulty in extending the analysis to more complicated ones, based

on a partition of X, on the lines of Dempster et al (1977, Section 4.2).

(ii) In practice some data-based method may be required for choosing the

smoothing parameter, h. The formula given by (8) depends on the unknown

density itself. A useful reference is Scott and Factor (1981).

-9-
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(iii) It has to be admitted that some of the gains embodied in Table I

are not remarkable. However, the methods of the paper should be valuable as

nonparametric imputation procedures (particularly method (A) with r = 1). In

many sample survey projects with non-response it is desirable to impute the

missing values in such a way as to provide a "fair" complete data-set. Given

that the statistical characteristics underlying the incompleteness process are

as described in the paper, method (A) will certainly achieve this aim.

(iv) Only the case of fixed Type I censoring has been considered here.

The same methods can be applied to random censoring and consistency will

obtain, provided we have a data-set Do which is known not to have been

subject to the possibility of censoring. In many problems involving random

censoring such a D. is not available and to use the uncensored data we have,

which would correspond to D,, for imputation or averaging would almost

certainly lead to bias. For this case methods have been developed for

smoothing the nonparametric Kaplan-Meier estimate of the survival curvel see

Foldes and Retjo (1981) and Yandell (1981).

-10-

. .. .. . . .- " .- J' ! -



TABLE1

Some values of RAfor the Example in Section 5

80

r 0.1 0.3 0.5 0.7 0.9

1 0.41 0.70 0.93 1.04 1.04

2 0.34 0.51 0.67 0.82 0.95

5 0.31 0.41 0.54 0.70 0.89

10 0.29 0.39 0.50 0.67 0.88

Go 0.28 0.35 0.46 0.63 0.86

(RB)



APPENDIX. CALCULATION OF INTEGRATED MEAN SQUARED
ERROR FOR CENSORED DATA CASE.

Once the first term on the right hand side of (10) is dealt with, the
A

remaining calculations are all related to fB(x) as given by (4).

From (3),

A -2 A--1 2f (( A -2var fA(x) - (n01+n+n2ln2 P(A)l-[h x-zl/h)0lz)dz + oh
Z A

- (n0+n1+n2)- 
2  {rP(A))' {h 2  _ K2 ((x-z)/h)f(z)dz + o(h 2 )}

A

If, given nj + n2, n2  Bi(n1+n2, P(A)) and if, given n0+n1+n2 - n

n0  0 n (or n. - Bi(n, 0 )), then the dominant term in Z var f A(x), for

use in (10), is

(1-00)(nrh2 )-1 f_ K2((x-z)/h)f(z)dz . (A.1)

A

(An unqualified "S" or "var" will be assumed to involve averaging over

any random variation not so far acounted for.)

This leads to the following contribution to (9).

f 9 var fA Xdx N --e 0 -)nrh 2-1 x - - K2((x-z)/h)f(z)dzdx
z A

Substitution of x by z - uh gives

(1-o )(nrh) 1f f(z)dz K2ludu
A (A.2)

- (1-0 0)(nrh) -P(A)I 2

A
We now concentrate on fB(X) from (4).

In the notation of Silverman (1978),

A
f 0X) - f(x) + b hX) + hCX)

where

bh W h 21 f"(x) + o(h)
2

-12-
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and a h(x) is a zero-mean Gaussian process with variance function

(n h)'If- -)
0 2fx + o~n h ), given no. Then

A-
P(A) - P(A) +Bh (A) +Sh (A)

where

Bh(A) -f Rb h (x)dx

and 5h(A)-f 0 h(x)dx

hhus

)AA

{h(A) 1 f K((x-z)/h f (z)dz
A

(bP()F1 {I - (5 (A)+Sh(A))/P(A)} f_ X((x-z)/h)(f(z)+bh(z)+cyh(z))dz
A

PK-1 h-' K((x-z)/h)f(z)dz + 0 (x) + Y h x))

where

hCx) -h1 f_ K((x-z)/h)bh(z)dz - Bh(A){hP())_1 f_ Y((x-z)/h)f(z)dz (A.3)
A A

and

y h x) - h1 f ((x-z)/h)a (z)dz - S h(A)(hP(A)) 1 f_ X((x-z)/h)f(z)dz
A hhA

When taking expectations over the sample sizes, the dominant term is

obtained simply by inserting expected values, n 0  for no, n(1-0 )P(A)

for n, and n(I-e 0P(A) for n 2 . Variances over the sample sizes will be

of order O(n1 I), which is o(n 1 h-1) and o(h 2), for h of the order we

shall use, namely O(n11 ) These variances may therefore be neglected.

it follows that, if all but the dominant terms are neglected,

A - 1 -1IZ f (z) n nO {f(x)+b (x)) + n(i-e )P(A){hP(A)lB 0 h 0

fA K((x-y)/h)f(y)dy + n(1-e )P(i){P(i))- 1 {h_1 fK(-)hfyd

+ Bh~x

-1 3-



CO 0 (f(x)+bh(X)) + n h 1  K((x-y)/h)f(y)dy

+ n(1-60 )0h X)]

= f(x) + bh(X) + (1-60)0h(X) + o(h2

Note, from (A.3), that f Bh(x)dx - 0. Also, for small h, it is
h

approximately true that

(x) - 0 (x e A)h
(A.4)

Sbhlx) - Bh(AP(A)f(x) (x e A)

If we define H(x) by

t h2Hx) b (x) + (1-80)8 hx) , (A.5)

then

2 1 h42 4

S(3 x) - f(x)) 2dx h h H + o(h )
B 4

where H2 - I H2 (x)dy. The approximation in (A.4) will be useful in

calculating H2 .

The main remaining calculation is to evaluate

A
var fBX)
!,X

into which we shall substitute mean values for no , n1 and n2 o

The dominant term in the variance over Z (which is independent of x)

becomes

n 1- )PAh2 fn-1-e 0 )P(A)h A K ((x-y)/h)f(y)dy p(A)

and the integral of this over x is

(i-0 )P(A)I2 n h * (A.6)

-14-
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The remaining contribution to (10) is the variance, over x, of

n -{nOa h(x) + n(1-0 )Yh(x)), that is,

W ahCX) + (1-e0)h-1 f K((x-z)/h)a (z)dz - (1-8 )Sh (){hP(A)' x
O h 0 -h O h

A /_ KX((x-z)/h)f(z)dz•

A

Given no, we have the following.

i) var a hx) - (n h)-I11f(x) + o(n1h
- I

h 0~ 12 f )~ 0 h

so f var ah(x)dx - (n0h)- 12 + o(n0 1 h
-1

(ii) var {h"1 f_ K((x-z)/h)oh(z)dz}
A

. Z K- {h-2 X _((x-z)/h)K((x-y)/h)oh(z)Oh(Y)dydzl

A A

0 n0 1 h-4 f(u) f_ I_ K((x-z)/h)K((x-y)/h)K((z-u)/h)K(y-u)/h)dydzdu}
A A

Integrate over x and substitute
x-Z y-u v U z-u

w --- tso that X w+t-v

h ; h h h'

Thus

f var {h-1 f_ K((x-z)/h)h(z)dz)dx
A

-no1 h-1 f_ f(y)dy ff K(v)K(w)K(t)K(w+t-v)dvdtdw
A

-1p()-
a (nO 0h) P(i)13

where 13 is the triple integral.

(iii) f cov(O hX), h-1 I _ K((x-z)/h)oh(z)dzldx
A

n h- 3  . .((x-z)/h)((x-u)/h)X((z-u)/h)f(u)dzdxdu
A

Substitute u - z-vh, x - z+wh. Thus, the right hand side is

n 1h 1 ff K(w)X(v+w)K(v)dv . f f(z-vh)dz
~A

Sn- h- I P(A) - (nhO )p() I
0 4 0 ).4

-15-



where 14 is the double integral.

(iv) cov(O hx), S'A)) = f cov(ahlX), ahlyl)dy
A

-1 -2 A + o~ 1 -2
f _ n h  f K(Cx-z)/h)KCCy-z)/h)fCz)dz + h )dy
A

Substitute (x-z)/h - u, (y-x)/h - v. Then

cov(Gh(X), Sh(Ai)) = O(n0 ) = O(n-  = o(n h-  .

(v) var(S A)) - f coVlGh(y), Yhlzlldydz
h ~ o~h~yG~)d

A A

h noIh -2 f_ I_ (f K((y-x)/h)K((z-x)/h)f(Cx)dx)dydz
A A

- O(n0
I) - o(n h-1), as in (iv).

(vi) covlh -1 f_ KC(x-z)/h)Ohz)dz, ShlA))
A

f _ f_ K(Cx-z)/h) covCoh(z), OhCy))ddy
A A

n 1 h-' f {_ f_ XC((x-z)/h)K((z-u)/h)K(y-u)/h)f(u)dzdy)du
A A

Oln 0 o(n-lh '), also.

Thus the dominant term in the integrated variance over x is obtained from (i),

(ii) and (iii). We obtain 2

A1 0i-
f l var fBx)dx - (nh)-l0 0 2 + 1 13 + 2(1-6 0 )1 4 )P(A))

- x 0

Combining this with (A.6) we obtain
f var fBlXldx - Gn-h 1 +olnlh 1 ) ,

where

GB - 1 2{0 + (i- 0)P(A)) + (1-8 0)P(A){(1-0 )13 / 0 + 21 ) . (A.7)

With the addition of (A.2), we have

f fvar ?A(x)dx - GAn-1 h-1 + on- hI ) ,

where

GA - B + (1-0)P(A)12 /r (A.S)
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